

Comparing Fractions

Both of these circles have been split into multiples of 4 therefore we can compare them.

Comparing Fractions

Comparing Fractions

Both of these circles have been split into a multiple of 5 therefore we can compare them.

Comparing Fractions

Comparing Fractions

$\frac{7}{15}$

5 and 15 are both multiples of 5 therefore we can compare them.
\square

Comparing Fractions

Comparing Fractions

To compare these two fractions, you must look at what has changed in the denominator, e.g. $4 \times 3=12$

Therefore, if the numerator has changed in the same way, the fractions would be equal, e.g. $1 \times 3=3$

Remember the Rule: Whatever you do to the denominator, you must do the same to the numerator.

Comparing Fractions

Comparing Fractions

Can you compare these two fractions by looking at what has changed in the denominator and seeing if it is the same in the numerator?

Remember the Rule: Whatever you do to the denominator, you must do the same to the numerator.

Comparing Fractions

$$
3 \times 4=12
$$

But $1 \times 4=4$, not 6 so these fractions are not equal. Which fraction is larger?

Comparing Fractions

Comparing Fractions

Can you compare these two fractions by looking at what has changed in the denominator?

Remember the Rule: Whatever you do to the denominator, you must do the same to the numerator.

Comparing Fractions

But $3 \times 3=9$, not 7 so these fractions are not equal. Which fraction is larger?

Comparing Fractions

Comparing Fractions

Have a go at comparing these fractions:

$$
\frac{2}{5}
$$

$$
\frac{5}{10}
$$

$\frac{2}{3}$

$\frac{4}{5}$

$\frac{12}{20}$

$$
\frac{3}{4}
$$

$$
\frac{12}{16}
$$

Ordering Fractions

The denominator in each of these fractions is a multiple of 4 therefore, we can compare and order them.

$$
\begin{array}{llll}
\frac{4}{8} & \frac{1}{4} & \frac{3}{4} & \frac{5}{8}
\end{array}
$$

First, change all of the fractions so that they have the same denominator.

Then write them in order from smallest to largest. Remember to write them in their original form.

$$
\begin{array}{llll}
\frac{1}{4} & \frac{4}{8} & \frac{5}{8} & \frac{3}{4}
\end{array}
$$

Ordering Fractions

Can you order the following fractions from smallest to largest? Start by changing each of the fractions so that the denominator is 20.

$\frac{2}{5}$	$\frac{2}{10}$	$\frac{9}{10}$	$\frac{3}{5}$	$\frac{3}{10}$
$\frac{8}{20}$	$\frac{4}{20}$	$\frac{18}{20}$	$\frac{12}{20}$	$\frac{6}{20}$

Now put them in order! Remember to write them in their original form!

$\frac{2}{10}$	$\frac{3}{10}$	$\frac{2}{5}$	$\frac{3}{5}$	$\frac{9}{10}$

Ordering Fractions

Order these fractions from smallest to largest? Decide on what denominator to change each fraction to.

$\frac{1}{2}$	$\frac{3}{8}$	$\frac{3}{4}$	$\frac{7}{8}$	$\frac{2}{8}$
$\frac{4}{8}$	$\frac{3}{8}$	$\frac{6}{8}$	$\frac{7}{8}$	$\frac{2}{8}$

Now put them in order! Remember to write them in their original form!

$$
\begin{array}{lllll}
\frac{2}{8} & \frac{3}{8} & \frac{1}{2} & \frac{3}{4} & \frac{7}{8}
\end{array}
$$

